# Spatial Disaggregation Techniques for Visualizing and Evaluating Map Unit Composition

**Amanda Moore** 

Soil Scientist/GIS Specialist

National Geospatial Development Center

### Agenda

- What is Spatial Disaggregation?
- Premise and Purpose
- Case Studies
  - Berkeley County, WV (Proof of Concept)
  - Denali National Park and Preserve, AK
- Conclusions

### **Spatial Disaggregation**

• The process of separating an entity into component parts based on implicit spatial relationships or patterns

#### **Premise**

- Soil map units can be disaggregated into individual components based on soil-landscape relationships documented in existing soil surveys
  - Soil-landscape models are commonly embedded in soil map unit descriptions in soil survey reports or stored as a series of values within the aggregate database
  - These values can be extracted and used to develop quantitative representations of soil-landscape models
  - The resulting models can be extrapolated (e.g., mapped) using any number of ancillary data layers and GIS and/or remote sensing methods

#### Purpose

- To model distribution of individual components within a map unit in order to:
  - Visualize and evaluate soil-landscape relationships documented in our aggregate data
  - Enable more precise estimation of component or map unit properties
  - Assist with correlation across multiple survey areas within an MLRA
  - Provide support component-level interpretations (e.g., ecological site maps)

# **Berkeley County, WV**





Conservation

In cooperation with WestVirginia Agricultural and Forestry Experiment Station

Soil Survey of Berkeley County, West Virginia



#### Soil Map Units

- BpE Blackthorn-Pecktonville very gravelly loams, 15-45 % slopes, extremely stony
  - (50% Blackthorn, 40% Pecktonville, 10% dissimilar inclusions)
- BpF Blackthorn-Pecktonville very gravelly loams, 35-45 % slopes, extremely stony
  - (60% Blackthorn, 30% Pecktonville, 10% dissimilar inclusions)

#### Simple Landscape Model

- Blackthorn soils are primarily found in concave landscape positions
- Pecktonville soils are primarily found in convex landscape positions



Blue (100) –
 converging flow areas:
 Blackthorn soils

- Orange (500) –
   diverging flow areas:
   Pecktonville soils
- Transparent (300) –
   linear flow areas:
   Unknown soils

Converging

(Blackthorn)

2150 ha

(36%)

625 ha

(42%)

**BpE** 

**BpF** 



#### Denali National Park, AK





Soil Survey of Denali National Park Area, Alaska



#### **Map Unit Selection Criteria**

- Have well-documented soil-landscape relationships;
- Have appropriate geospatial data layers available; and
- Have soil-landscape relationships that can be adequately characterized by available geospatial data.

#### Selected Soil Map Units

- 7MS1D Alpine Dark Sedimentary Mountains
- 7MSHD Alpine Dark Sedimentary Mountains, High Elevation
- 7V1 Alpine Lower Mountain Slopes and Fans with Discontinuous Permafrost
- 7V11 Alpine Fans



#### Soil Landscape Model Development

- Identified NASIS data elements that might contain useful information about the soil forming environment
  - Slope gradient, Elevation, Aspect, Mean Annual Precipitation, Potential Vegetation, Geomorphic Description (Feature Type and Feature Name), Hillslope Profile, Slope Shape Across, Slope Shape Up/Down, Parent Material Group
  - Recorded values for selected data elements by map unit and component (major and minor)

#### Soil Landscape Model Development

- Reviewed NASIS data and looked for unique values that could be used to model individual components in a map unit
  - For instance, if a map unit consists of two components and the first is found predominantly on north-facing slopes and the second on south-facing slopes, aspect can be used to predict the distribution of these soils within the map unit
- Selected (or created) GIS data layers to represent key landscape characteristics

#### Soil Landscape Model Development

- Developed quantitative rules for each map unit and implemented them in a GIS
  - 7MS1D: Alpine-scrub dark gravelly colluvial slopes = < 3700 ft elevation and linear planfrom curvature OR linear profile curvature
- Reviewed maps, and edited rules based on comments from the MO 17 Senior Regional Soil Scientist

# **Key GIS Data Layers**



## **Key GIS Data Layers**

Landsat Scene, 15 class landcover map





# **Soil Components**



# 7MSHD – Alpine Dark Sedimentary Mountains, High Elevation

| Component                                                    | % Composistion NASIS | % Composition<br>Component Map |
|--------------------------------------------------------------|----------------------|--------------------------------|
| Interior-nonvegetated rock outcrop, ice, talus, and/or drift | 25 – 60              | 16                             |
| Alpine-dwarf scrub dark gravelly colluvial slopes            | 15 – 40              | 30                             |
| Alpine-dwarf scrub dark gravelly colluvial slopes - moist    | 15 – 30              | 29                             |
| (minor) Alpine-scrub-meadow mosaic gravelly swales           | 5 – 15               | 21                             |
| (minor) Alpine-sedge-dwarf scrub gravelly swales, frozen     | 0 – 5                | 4                              |
| Other                                                        | 0                    | 0                              |

#### **7VII – Alpine Fans**

| Component                                                           | % Composistion NASIS | % Composition<br>Component Map |
|---------------------------------------------------------------------|----------------------|--------------------------------|
| Alpine-riparian scrub gravelly flood plains                         | 20 – 55              | 48                             |
| Alpine-scrub gravelly terraces                                      | 15 – 40              | 29                             |
| Nonvegetated alluvium, riverwash                                    | 10 – 40              | 14                             |
| (minor) Alpine-riparian scrub gravelly flood plains, moderately wet | 10 – 35              | Not Modeled                    |
| (minor) Alpine-riparian scrub loamy flood plains                    | 5 – 15               | Not Modeled                    |
| (minor) Alpine-dwarf scrub gravelly fan terraces                    | 5 – 15               | Not Modeled                    |
| Other                                                               | 0                    | 9                              |

# **Ecological Sites**



#### **Parent Material**



# Issues with Landscape Model Development from NASIS Data

- NASIS data for a particular component may not be fully populated
- Quality of NASIS data may be unknown, or errors may exist in the NASIS database
- Slope, aspect, elevation, and other values may be populated for an entire map unit rather than individual components
- The scales at which slope shape and other morphometric properties are estimated and populated are unknown, and can be variable

#### Conclusions

- Development of soil component maps from SSURGO and NASIS data allows one to
  - visualize the distribution of soil components on the landscape and within a map unit
  - visualize component-level properties
  - see a spatial representation of soil-landscape information stored in the NASIS aggregate data

#### **Conclusions**

- Ability to develop reasonable soil-landscape models from NASIS aggregate data depends on the completeness and accuracy of data in the database
- Expert knowledge is required to resolve errors or conflicts

#### Acknowledgements

- Mark Clark, Senior Regional Soil Scientist, MO-17
- Darrell Kautz, Business Analyst, NGDC

# Questions?